Forecasting the Amount of Blood Storage Using the Support Vector Machine (Svm) Method


Peramalan Jumlah Permintaan Darah Menggunakan Metode Support Vector Machine (Svm)


  • (1) * Novi Prastyanda Putra Pratama            Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (2)  Tedjo Sukmono            Universitas Muhammadiyah Sidoarjo  
            Indonesia

    (*) Corresponding Author

Abstract

Blood transfusion is a process of sending or transferring blood to another place and the task is delegated to the PMI Blood Donation Unit with several tasks including; deployment and preservation of blood donors, provision and processing of blood, and distribution of blood to health agencies. However, the supply and demand from health agencies have a significant difference. The difference for each blood group is very large, in group O deficiency by 28%, in group A deficiency by 38%, in group B excess by 28%, and in group AB deficiency by 84%. To overcome this problem, it is necessary to estimate the demand for blood that will occur in the future period. One of the tools that can answer this problem is demand forecasting and what will be used in this study is forecasting using the Support Vector Machine (SVM) method. This SVM method is a relatively new machine learning-based technique for making predictions, both used in classification and regression cases. The result of this study obtained good MAPE values, namely in blood group O is 14%, in blood group A is 15%, in blood group B is 13%, and in blood type AB is 24%.

Downloads

Download data is not yet available.

References

M. Burrakhman, I. F. Astuti, and D. M. Khairina, “Rancang Bangun Sistem Informasi Donor Darah Berbasis Web (Studi Kasus : Unit Kegiatan Mahasiswa Korps Sukarela Universitas Mulawarman),” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 11, no. 1, p. 55, 2016, doi: 10.30872/jim.v11i1.205.

S. E. Sari, “Gambaran Pengetahuan, Sikap, Dan Tindakan Donor Darah Pada Mahasiswa Fakultas Kedokteran Universitas Tanjungpura Pontianak,” vol. 1, pp. 81–109, 2013.

A. Oktari and N. D. Silvia, “Pemeriksaan Golongan Darah Sistem ABO Metode Slide dengan Reagen Serum Golongan Darah A , B , O,” J. Teknol. Lab., vol. 5, no. 2, pp. 49–54, 2016, [Online]. Available: https://teknolabjournal.com/index.php/Jtl/article/view/78.

N. L. A. K. Yuniastari and I. W. W. Wirawan, “Peramalan Permintaan Produk Perak Menggunakan Metode Simple Moving Average Dan Single Exponential Smoothing,” Sist. dan Inform. STIKOM Bali, vol. 9, no. 1, pp. 97–106, 2014.

R. Rahmadayanti, B. Susilo, and D. Puspitaningrum, “Perbandingan Keakuratan Metode Autoregressive Integrated Moving Average (Arima) dan Exponential Smoothing pada Peramalan Penjualan Semen di PT Sinar Abadi,” J. Rekursif, vol. 3, no. 1, pp. 23–36, 2015.

Y. Radhika and M. Shashi, “Atmospheric Temperature Prediction using Support Vector Machines,” Int. J. Comput. Theory Eng., vol. 1, no. 1, pp. 55–58, 2009, doi: 10.7763/ijcte.2009.v1.9.

Wulandari, Retno Tri. 2017. “Data Mining Teori dan Aplikasi Rapidminer”. Yogyakarta: Gava Media.

H. Yasin, A. Prahutama, and T. W. Utami, “PREDIKSI HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION DENGAN ALGORITMA GRID SEARCH,” Media Stat., vol. 7, no. 1, pp. 29–35, 2014.

H. Leidiyana, “Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,” J. Penelit. Ilmu Komputer, Syst. Embed. Log., vol. 1, no. 1, pp. 65–76, 2013.

L. Herawati, Uji Normalitas Data Kesehatan Menggunakan SPSS. 2016.

K. J. Kim, “Financial time series forecasting using support vector machines,” Neurocomputing, vol. 55, no. 1–2, pp. 307–319, 2003, doi: 10.1016/S0925-2312(03)00372-2.

A. S. Nugroho, A. B. Witarto, and D. Handoko, “Application of Support Vector Machine in Bioinformatics,” Proc. 2011 Chinese Control Decis. Conf. CCDC 2011, pp. 842–847, 2003, doi: 10.1109/CCDC.2011.5968300.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting. Canada: A John Wiley & Sons, Inc., Publication, 2008.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2022-12-31
 
How to Cite
[1]
N. P. Putra Pratama and T. Sukmono, “Forecasting the Amount of Blood Storage Using the Support Vector Machine (Svm) Method”, PELS, vol. 3, Dec. 2022.

Most read articles by the same author(s)