Forecasting the Number of Offset Printing Machine Breakdowns Using the Support Vector Machine (SVM) Metdhod


Peramalan Jumlah Breakdown Mesin Printing Offset Menggunakan Metode Support Vector Machine (SVM)


  • (1) * Nafis Khumaidah            Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (2)  Tedjo Sukmono            Universitas Muhammadiyah Sidoarjo  
            Indonesia

    (*) Corresponding Author

Abstract

PT. MJT is a company engaged in manufacturing that produces various types of plastic tubes for cosmetic packaging. Production activities at PT. MJT uses an intermittent process, which in the printing division requires a longer total setup time because this process produces various types of specifications of goods to order. This has an effect on the amount of engine breakdown. The purpose of this research is to try the method of forecasting the number of breakdowns for offset printing machines at PT. MJT. One of the methods used in this research is the Support Vector Machine method. Support Vector Machine is a method that can help predict the number of breakdowns that will be experienced by the offset printing machine at PT. MJT. Support vector machine is a method that can reduce the error value in forecasting compared to other methods. From this research, it is hoped that it can produce a forecast of the number of breakdowns for offset printing machines at PT. MJT for a period of one year or twelve periods.

Downloads

Download data is not yet available.

References

Assauri, S. 2016. Manajemen Operasi Produksi. Jakarta: PT. Raja Grafido Persada.

Jibril, dkk. (2017). Neurodevelopment of HIV-Exposed and HIV-Unexposed Uninfected Childern at 24 Mount. Am Acad Pediatrics.

Sibuea, F. L., & Sapta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 4(1). DOI: https://doi.org/10.33330/jurteksi.v4i1.28

Gustientiedina., Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. Jurnal Nasional Teknologi dan Sistem Informasi, 5(1). DOI: https://doi.org/10.25077/TEKNOSI.v5i1.2019.17-24

Sugiyono, (2017). Metode Penelitian Kuantitatif, Kualitati dan R&D. Bandung.

Krisandi, dkk. (2013). Algoritma K-Nearest Neighbor dalam Klasifikasi Data Hasil Produksi Kelapa Sawit pada PT. Minamas Kecamatan Paridu. Bulletin Ilmiah Math. Stat. dan Terapannya (Bimaster).

Drajana, I. C. R. 2017. Metode Support Vector Machine dan Forward Selection Prediksi Pembayaran Pembelian Bahan Baku Kopra. ILKOM Jurnal Ilmiah, 9(2), 116-123. DOI: https://doi.org/10.33096/ilkom.v9i2.134.116-123

Septiningrum, L., Yasin, H., Sugito. (2015). Prediksi Indeks Harga Saham Gabungan Menggunakan Support Vector Regression (SVR) dengan Algoritma Grid Search. Jurnal Gaussian, 4(2).

Permana, R. A., & Sahara, S. 2019. Metode Support Vector Machine Sebagai Penentu Kelulusan Mahasiswa pada Pembelajaran Elektronik. Jurnal Khatulistiwa Informatika, 7(1), 50-58. DOI: https://doi.org/10.31294/jki.v7i1.34

Margo, K., & Pendawa, S. (2015). Analisa dan Penerapan Metode Single Exponential Smoothing untuk Prediksi Penjualan pada Periode Tertentu. Prosiding SNATIF.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2021-07-14
 
How to Cite
[1]
N. Khumaidah and T. Sukmono, “Forecasting the Number of Offset Printing Machine Breakdowns Using the Support Vector Machine (SVM) Metdhod”, PELS, vol. 1, no. 2, Jul. 2021.

Most read articles by the same author(s)