Text Preprocessing on Emotional Tweets Case Study: Covid-19 Vaccine Rejection
Text Preprocessing pada Tweet Emosi Studi Kasus : Penolakan Vaksin Covid-19
Abstract
Emotion, both verbal and non-verbal, plays a crucial role in expressing opinions, especially in the digital realm of text-based social media. Emotion classification becomes essential for extracting and categorizing responses or opinions expressed by individuals on various issues or events. This study focuses on classifying emotions conveyed in text-based opinions extracted from Twitter. Utilizing a dictionary-based approach, the research aims to classify emotions into seven categories: anticipation, pleasure, trust, anger, disgust, fear, and sadness. Through practical work, the author develops a dictionary comprising key words for each emotion aspect, facilitating accurate classification. The results contribute to enhancing understanding and analyzing emotional expressions in online discourse, offering valuable insights for sentiment analysis applications and social media monitoring tools.
Highlights :
- Emotion classification crucial for understanding online opinions.
- Study focuses on categorizing emotions from Twitter text.
- Dictionary-based approach enhances accuracy in emotion classification.
Keywords : Emotion classification, text-based social media, Twitter, dictionary-based approach, sentiment analysis.
Downloads
References
A. W, “Klasifikasi Emosi pada teks menggunakan Deep Learning,” vol. 6, no. 1, 2021.
A. K. Santoso, A. Noviriandini, A. Kurniasih, B. D. Wicaksono, and A. Nuryanto, “Klasifikasi Persepsi
Pengguna Twitter Terhadap Kasus Covid-19 Menggunakan Metode Logistic Regression,” JIK (Jurnal
Inform. dan Komputer), vol. 5, no. 2, pp. 234–241, 2021. DOI: https://doi.org/10.30865/klik.v2i6.374
C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada
Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak,
vol. 3, no. 2, pp. 145–160, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika
A. Nurfauzan and W. Maharani, “Klasifikasi Emosi Pada Pengguna Twitter Menggunakan Metode
Klasifikasi Decision Tree,” Univ. Telkom, 2021.
N. Ramdhani and R. H. Al-Fadillah, “Analisis Sentimen Pengguna Twitter Terhadap Belajar Daring Selama
Pandemi Covid-19 Dengan Deep Learning,” J. Siliwangi, vol. 7, no. 2, p. 2021, 2021.
Copyright (c) 2024 Dewi Melisa Putri, Yulian Findawati
This work is licensed under a Creative Commons Attribution 4.0 International License.