Response to Vegetative Growth of Soybean (Glycine Max) Variety of Anjasmoro and Demas 1 to Giving Trichoderma Sp. on the Check of Salinity Respons Pertumbuhan Vegetatif Kedelai (Glycine Max) Varietas Anjasmoro dan Demas 1 Terhadap Pemberian Pupuk Kompos Trichoderma Sp. pada Cekaman Salinitas

Main Article Content

Zainur Rochman


This study aims to determine the response of the vegetative growth of soybean (Glycine max) of Anjasmoro and Demas varieties to the application of Trichoderma sp. Compost. on salinity stress. This research was conducted in the dry land of the swamp of Jabon Village, Sidoarjo, from March to May 2020. The experiment was arranged factorial using a Randomized Block Design  consisting of two factors, namely: the first factor was soybean varieties consisting of: varieties. Anjasmoro, and Demas 1 varieties, while the second factor was the application of Trichoderma compost consisting of: without Trichoderma and with Trichoderma. Of the 4 treatment combinations were repeated 5 times, in order to obtain 20 experimental units, each containing 40 plants. Data were analyzed by ANOVA followed by the 5% HSD test. The results showed that there was a significant interaction effect between the varieties and the application of Trichoderma sp. on the growth rate of sprouts and the number of leaves grown on land with an average salinity of 4 at 35 days after planting. Anjasmoro variety shows tolerance on saline soil, while Demas 1 variants are intolerant to saline soil. Anjasmoro varieties treated with Trichoderma sp. compost were able to show a sprout growth rate of up to 6.10 cm per day and accelerate the appearance of flowers on high salinity soils. The combination of these two has the potential to be tested and developed into a wide production stage on high salinity swamps.


Download data is not yet available.

Article Details

How to Cite
Z. Rochman and Sutarman, “Response to Vegetative Growth of Soybean (Glycine Max) Variety of Anjasmoro and Demas 1 to Giving Trichoderma Sp. on the Check of Salinity”, PELS, vol. 1, no. 1, Mar. 2021.


Rohmah AE& Saputro TB. 2016. Analisis Pertumbuhan Tanaman Kedelai (Glycine max L) Varietas Grobogan pada Kondisi Cekaman Genangan. J. Sains dan seni ITS. 5 (2). 29-33
[BPS] Badan Pusat Statistik. 2015. Produksi kedelai menurut provinsi (ton) pada tahun 1993-2015. Jakarta (ID)
Taufiq A, Kristiono A,&Harnowo D. 2015. Respon varietas unggul kacang tanah terhadap cekaman salinitas.Penelitian Pertanian Tanaman Pangan. Jakarta
Direktorat Jenderal Tanaman Pangan. 2011. Pedoman teknis pengelolaan produksi kedelai tahun 2011. Kementerian Pertanian. Jakarta
Sutarman. 2016. Biofertlizer fungi: Trichoderma dan mikoriza. Umsida Press. Sidoarjo
Miftakhurrohmat A, Dewi FD, &Sutarman, 2019. Local Soybean (Glycine max (L)) Stomatas’ Morphological and Anatomic Response In 3rd Vegetation Stage Towards Light Intensity Sress. IOP Conf. Series: Journal of Physics: Conf. Series 1232 (2019) 012043. doi:10.1088/1742-6596/1232/1/012043
Sutarman, Prihatiningrum AE, Sukarno A, Miftahurrohmat A. 2018. Initial growth response of shallot on Trichoderma formulated in oyster mushroom cultivation waste. IOP Conf. Series: Materials Science and Engineering 420 (2018) 012064 doi:10.1088/1757-899X/420/1/012064
Miftakhurrohmat A & Sutarman. 2021. The morphological response of the soybean growth (Glycine max (l)) untilvegetative stage 3 on various intensities of light. IOP Conf. Series: Materials Science and Engineering 420 (2018) 012069 doi:10.1088/1757-899X/420/1/012069
Sutarman, Maharani NP, Wachid A, Abror M, Machfud A, &Miftahurrohmat A. 2018. Effect of Ectomycorrhizal Fungi and Trichoderma harzianumon the Clove (Syzygium aromaticum L.) Seedlings Performances. IOP Conf. Series: Journal of Physics: Conf. Series 1232 (2019) 012022. doi:10.1088/1742-6596/1232/1/012022
Balitkabi. 2016. Deskripsi varietas unggul kedelai 1918-2016. Balai Penelitian Tanaman Aneka Kacang dan Umbi, Departemen Pertanian RI. Malang
Usnawiyah, Delvian, Sabrina T. 2012. Pertumbuhan dan Produksi Kedelai Varietas Anjasmoro pada Tanah Salin. Jurnal Agrium. 9 (1): 10-12
Singh A, Shukla N, Kabadwal BC, Tewari AK, & Kumar J. 2018. Review on plant-Trichoderma-pathogen interaction. Int. J. Curr. Microbiol. App. Sci. 7(02): 2382–2397
Shang J, Liu B, & Xu Z. 2020. Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biol. Control. 143: 104205
Vinale F, Sivasithamparam K, Ghisalberti EL , Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, & Lorito M. 2014. Trichoderma secondary metabolitesactive on plants and fungal pathogens. Open Mycol. J. 8: 127–139
Karim A, Rahmiati, Ida Fauziah. 2020. Isolasi Dan Uji Antagonis Trichoderma Terhadap Fusarium Oxysporum Secara In Vitro. Jurnal Biosains. 6(1): 2460-6804
Zeilinger S, Gruber S, Bansal R, & Mukherjee PK. 2016. Secondary metabolism in Trichoderma-chemistry meets genomics. Fungal Biol. Rev. 30(2): 74–90
Zhao L, Liu Q, Zhang Y, Cui Q, & Liang Y. 2017. Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress. J. Integr.e Agric. 16(6): 1341–1346
López-Bucioa J, Pelagio-Floresa R, & Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus.Sci. Hortic. 196: 109–123
Affandi M, Herry N, Wiwik SH. 2019. Formulasi biofertilizer granular berbahan mikroba Trichoderma sp. Plumula. 7(2): 2089 – 8010
He A, LiuJ, Wang X, Zhang Q, Song W, & Che J. 2019. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18 (3): 599–606.