Forecasting Raw Material Demand for Battery Breaker Production Process


Peramalan Permintaan Bahan Baku untuk Proses Produksi Pemecah Baterai


  • (1) * Muhammad Hizam Anshori            Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (2)  Atikha Sidhi Cahyana            Universitas Muhammadiyah Sidoarjo  
            Indonesia

    (*) Corresponding Author

Abstract

This study aims to identify the most effective forecasting method for predicting raw material demand in the tin smelting industry, addressing the challenge of uncertainty in material arrival and inaccurate demand forecasting. Three methods, namely moving averages with n = 3 and n = 5, and exponential smoothing, were evaluated using historical data. Results indicate that exponential smoothing with α = 0.2 outperformed the other methods, yielding the smallest error rate with a Mean Absolute Percentage Error (MAPE) of 23%, Mean Absolute Deviation (MAD) of 411, and Mean Squared Error (MSE) of 293303. The implication of these findings underscores the importance of employing appropriate forecasting techniques to optimize inventory management and mitigate shortages in critical industries reliant on volatile raw material supplies.

Highlights :

  • Accurate demand forecasting is crucial for companies engaged in smelting to prevent shortages and inventory increases.
  • Three methods were used to determine the most appropriate forecasting method for raw material demand based on historical data: moving average with n = 3 and n = 5, and exponential smoothing with α = 0.2.
  • The Exponential Smoothing Method with α = 0.2 had the smallest error rate, with a MAPE value of 23%, MAD of 411, and MSE of 293303, and can be used to optimize demand forecasting for the next period.

Keywords: demand forecasting, smelting, raw materials, historical data, moving average, exponential smoothing.

Downloads

Download data is not yet available.

References

A. S. Cahyana And I. A. S. Wulandari, Buku Ajar Manufaktur Berkelanjutan, Edisi Pertama. Sidoarjo, Jawa Timur: Umsida Press, 2021.

R. Yudaruddin, Forecasting Untuk Kegiatan Ekonomi Dan Bisnis, Edisi Pertama. Samarinda, Kalimantan Timur: Rv. Pustaka Horizon Anggota Ikapi, 2019.

D. Ratna Kania, S. Putri Lestari, B. Barlian, P. Studi Manajemen, F. Ekonomi Dan Bisnis, And U. Perjuangan Tasikmalaya, “Penerapan Metode Peramalan Moving Average Dan Exponential Smoothing Untuk Menyusun Perencanaan Produksi (Survei Pada Umkm Pembuatan Bordir Dan Pakaian, Nining Collection Di Ciamis),” Jurnal Ilmiah Multidisiplin, Vol. 1, No. 10, 2022.

S. Sinulingga, Perencanaan Dan Pengendalian Produksi, Edisi Pertama. Yogyakarta: Graha Ilmu, 2009.

T. Baroto, Perencanaan Dan Pengendalian Produksi, Edisi Pertama. Pejanten Barat Jakarta 12510: Ghalia Indonesia, 2002.

V. P. Rau, J. S. B. Sumarauw, And M. M. Karuntu, “Analysis Of Hollow Brick Demand Forecasting On Ud. Immanuel Air Madidi,” Jurnal Emba, Vol. 6, No. 3, Pp. 1498–1507, 2018.

H. D. E. , N. I. Sinaga, “Perbandingan Double Moving Average Dengan Double Exponential Smoothing Pada Peramalan Bahan Medis Habis Pakai,” Jurteksi (Jurnal Teknologi Dan Sistem Informasi) , Vol. 4, No. 2, Pp. 197–204, 2018.

R. Josenda And C. Indah Asmarawati, “Analisa Peramalan Produk Palet Kayu Di Cv. Barokah Utama,” Jurnal Comasie, Pp. 10–17, 2021.

E. Susanti, “Pendugaan Peramalan Earning Per Share Saham Lq45,” 2019. DOI: https://doi.org/10.33884/jrsi.v4i2.1215

A. Lusiana And P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap Di Pt X,” 2020. DOI: https://doi.org/10.36040/industri.v10i1.2530

M. Zainul, Manajemen Operasional, Edisi Pertama. 2019.

A. Stephano Et Al., “Sistem Informasi Peramalan Tren Pelanggan Dengan Menggunakan Metode Double Exponential Smoothing Di Mess Gm [1],” 2020.

A. Ari Bowo And F. Djumiati Sitania, “Analisis Pengendalian Persediaan Bahan Baku Utama Produksi Roti Menggunakan Metode Economic Order Quantity (Studi Kasus: Sari Madu Bakery Samarinda),” 2023. DOI: https://doi.org/10.24014/jti.v9i1.20584

D. Agista Pratama, S. Hidayati, E. Suroso, And D. Sartika, “Analisis Peramalan Permintaan Dan Pengendalian Persediaan Bahan Baku Pembantu Pada Industri Gula (Studi Kasus Pt. Xyz Lampung Utara) Analysis Forecasting Dem & Control Of Supply Raw Materialsi In The Sugar Industry (Case Study Of Pt. Xyz North Lampung),” Jurnal Penelitian Pertanian Terapan, Vol. 20, No. 2, Pp. 148–160, 2020, Doi: 10.25181/Jppt.V120i2.1636. DOI: https://doi.org/10.25181/jppt.v20i2.1636

Rr. R. C. Handayani And F. T. R. Silalahi, “Perencanaan Pengendalian Persediaan Bahan Baku Kentang Merah Di Umkm Keripik Kentang Uwais Medan,” Journal Of Integrated System, Vol. 5, No. 2, Pp. 232–249, Dec. 2022, Doi: 10.28932/Jis.V5i2.5321. DOI: https://doi.org/10.28932/jis.v5i2.5321

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2024-02-21
 
How to Cite
[1]
M. H. Anshori and A. S. Cahyana, “Forecasting Raw Material Demand for Battery Breaker Production Process”, PELS, vol. 5, pp. 43-49, Feb. 2024.