Sentiment Analysis of OYO App Reviews Using the Support Vector Machine Algorithm


Analisis Sentimen terhadap Ulasan Aplikasi OYO menggunakan Algoritma Support Vector Machine


  • (1) * Zaenal Zaenal            Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (2)  Ika Ratna Indra Astutik            Universitas Muhammadiyah Sidoarjo  
            Indonesia

    (*) Corresponding Author

Abstract

The rapidly growing tourism industry causes the need for hotels to increase. This has led to innovation in the form of virtual hotel operators, one of which is OYO. OYO is a VHO application with the highest rating found on  the Google playstore. OYO is one of the applications with millions of users. Of course, this cannot be separated from the ratings and reviews from users. The reviews contained in the playstore itself can contain positive, neutral or even negative opinions. Given the importance of user reviews to application development, this research classifies reviews on the OYO application to determine user sentiment. In this study, the data used is 2,000 data which will be classified into positive, neutral and negative sentiments. The Support vector machine algorithm was chosen because it is capable of producing high accuracy. Based on testing, the Radial basis function kernel is able to produce the highest accuracy among other kernels and by using a dataset division ratio of 80:20 the accuracy obtained is 78.98%. While testing using the Confusion matrix produces an accuracy of 80.36%.

Downloads

Download data is not yet available.

Author Biographies

Zaenal Zaenal, Universitas Muhammadiyah Sidoarjo

Program Studi Informatika

Ika Ratna Indra Astutik, Universitas Muhammadiyah Sidoarjo

Program Studi Informatika

References

E. Gunawan, G. O. Sebastian, and A. Harianto, “Analisa Pengaruh Kualitas Layanan Terhadap Kepuasan pelanggan Menginap di Empat Virtual Hotel Operator di Surabaya,” Journal of Indonesian Tourism, Hospitality and Recreation, vol. 2, no. 2, pp. 145–153, 2019. DOI: https://doi.org/10.17509/jithor.v2i2.20981

F. Kusumawati, “Tren Virtual Hotel Operator (Vho) Di Yogyakarta (Studi Kasus Hotel OYO),” Media Wisata, vol. 18, no. 8, pp. 90–100, 2020, doi: 10.36275/mws. DOI: https://doi.org/10.36276/mws.v18i1.80

A. C. Najib, A. Irsyad, G. A. Qandi, and N. A. Rakhmawati, “Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter,” Fountain of Informatics Journal, vol. 4, no. 2, p. 41, Nov. 2019, doi: 10.21111/fij.v4i2.3573. DOI: https://doi.org/10.21111/fij.v4i2.3573

R. Feldman and J. Sanger, The text mining handbook : advanced approaches in analyzing unstructured data. Cambridge University Press, 2007. DOI: https://doi.org/10.1017/CBO9780511546914

S. Sanjaya and E. A. Absar, “Pengelompokan Dokumen Menggunakan Winnowing Fingerprint dengan Metode K-Nearest Neighbour,” 2015.

D. K. Barupal and O. Fiehn, “Generating the blood exposome database using a comprehensive text mining and database fusion approach,” Environ Health Perspect, vol. 127, no. 9, Sep. 2019, doi: 10.1289/EHP4713. DOI: https://doi.org/10.1289/EHP4713

Jerryl Jeovano, “2D Data Visualization Tools Menggunakan Flask dan AngularJS,” 2020. DOI: https://doi.org/10.52985/insyst.v2i2.184

H. Leidiyana, “Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bemotor,” 2013.

B. Sartono and U. D. Syafitri, “Metode Pohon Gabungan: Solusi Pilihan untuk Mengatasi Kelemahan Pohon Regresi dan Klasifikasi Tunggal,” Forum Statistika dan Komputasi, vol. 15, no. 1, 2010.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” 2016. [Online]. Available: https://t.co/jrvaMsgBdH DOI: https://doi.org/10.31284/j.integer.2017.v2i1.95

M. Windarti, “Perbandingan Kinerja Algoritma Naive Bayes dan Bayesian Network dalam Klasifikasi Masa Studi Mahasiswa,” 2018.

E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network untuk Klasifikasi Tanaman pada Citra Resolusi Tinggi,” GEOMATIKA, vol. 24, no. 2, p. 61, Nov. 2018, doi: 10.24895/jig.2018.24-2.810. DOI: https://doi.org/10.24895/JIG.2018.24-2.810

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2022-12-31
 
How to Cite
[1]
Z. Zaenal and I. R. I. Astutik, “Sentiment Analysis of OYO App Reviews Using the Support Vector Machine Algorithm”, PELS, vol. 3, Dec. 2022.

Most read articles by the same author(s)