Length of Stay Patterns and Their Relation to Coding Accuracy

Polanya Lama Tinggal Pasien dan Hubungannya dengan Akurasi Koding

Authors

  • Husni Abdul Muchlis Program Studi S1 Terapan Manajemen Informasi Kesehatan, Universitas Esa Unggul
  • Witri Zuama Qomarania Program Studi S1 Terapan Manajemen Informasi Kesehatan, Universitas Esa Unggul
  • Mieke Nurmalasari Program Studi S1 Terapan Manajemen Informasi Kesehatan, Universitas Esa Unggul
  • Anastasia Cyntia Dewi Kurniawati Program Studi S1 Terapan Manajemen Informasi Kesehatan, Universitas Esa Unggul
  • Betri Widya Lestari Rumah Sakit Pelni, Jakarta Barat

Keywords:

Length of Stay, Case-Based Groups, AMLOS, GMLOS, Hospital Management

Abstract

Hospitals face efficiency and quality challenges within the Case-Based Groups (CBG's) financing system, where a patient’s Length of Stay (LOS) is critical. Accurate LOS data is crucial for strategic decisions, cost management, and quality care. A study at a Type B Hospital in Bekasi City found significant variation and outliers in LOS, indicating a non-normal distribution. This observational analytic study, involving 3,151 inpatient claims from January 2024, analyzed LOS data and its impact on clinical documentation and coding quality. The analysis compared the Arithmetic Mean Length of Stay (AMLOS) and the Geometric Mean Length of Stay (GMLOS) to identify outliers, followed by a Wilcoxon test. Results showed LOS varied from 1 to 48 days, with an AMLOS of 7.13 and a GMLOS of 6.76 days, indicating positive skewness from outliers. AMLOS was consistently higher than GMLOS in the top 10 CBG's, especially for moderate and severe cases. The Wilcoxon test (p<0.05) confirmed a significant statistical difference, showing GMLOS more accurately represents the appropriate LOS. The presence of outliers (e.g., >30 or 44 days) suggests potential issues with documentation or coding. Therefore, using the more robust GMLOS is crucial for hospitals to optimize management, improve care, and maintain the quality of clinical documentation and coding.

Downloads

Download data is not yet available.

References

Abban, E. K. (2021). Impact of Length of Stay on Both Financial Health and Medical Outcomes of Mission Hospitals in Rural Ghana. Texila International Journal of Management, 7(2), 175–182. https://doi.org/10.21522/TIJMG.2015.07.02.Art015

Ahmad, M., Ur Rehman, H., & Shaikh, A. A. (2021). Enhanced Recovery Program: Does Preoperative Education Reduce Length of Hospital Stay in Primary Hip and Knee Arthroplasty? Cureus, 8(33), 44. https://doi.org/10.7759/cureus.18639

Asthana, S., Bajaj, P. M., Staub, J. R., Workman, C. D., Reyes, S. G., Follett, M. A., Patel, A. A., Hsu, W. K., & Divi, S. N. (2025). Relative Value Unit (RVU) and Medicare Severity Diagnosis-Related Group (MS-DRG) Reimbursement in Cervical Spinal Fusion. Clinical Spine Surgery, 38(2), E75–E80. https://doi.org/10.1097/BSD.0000000000001660

Ben Khalfallah, H., Jelassi, M., Demongeot, J., & Bellamine Ben Saoud, N. (2025). Advancements in Predictive Analytics: Machine Learning Approaches to Estimating Length of Stay and Mortality in Sepsis. Computation, 13(1), 8. https://doi.org/10.3390/computation13010008

Brodie, S. (2019). Association of Clinical Documentation Integrity Specialist. Retrieved from https://acdis.org/articles/qa-understanding-gmlos

Bull, D. A. (2024). Average Length of Stay, Average Preventable Readmission Rates, and Average Total Cost of Care: Is There a Relationship? Journal of Business, Technology and Leadership, 6(1), 1–24. https://doi.org/10.54845/btljournal.v6i1.41

Dai, J. G., & Shi, P. (2021). Recent Modeling and Analytical Advances in Hospital Inpatient Flow Management. Production and Operations Management, 30(6), 1838–1862. https://doi.org/10.1111/poms.13132

Delora, A., Mills, A., Jacobson, D., Cornett, B., Peacock, W. F., Datta, A., & Jenks, S. P. (2022). Socioeconomic and Comorbid Factors Affecting Mortality and Length of Stay in COVID-19 Patients. Cureus. https://doi.org/10.7759/cureus.30224

Fernandez, G. A., & Vatcheva, K. P. (2022). A Comparison of Statistical Methods for Modeling Count Data with an Application to Hospital Length of Stay. BMC Medical Research Methodology, 22(1), 211. https://doi.org/10.1186/s12874-022-01685-8

Howard, C. (2024a). GMLOS vs ALOS. EvidenceCare. Retrieved from https://evidence.care/gmlos-vs-alos/

Howard, C. (2024b). Understanding GMLOS and ALOS. EvidenceCare. Retrieved from https://evidence.care/understanding-gmlos-and-alos/

Hughes, A. H., Horrocks, D., Leung, C., Richardson, M. B., Sheehy, A. M., & Locke, C. F. S. (2021). The Increasing Impact of Length of Stay “Outliers” on Length of Stay at an Urban Academic Hospital. BMC Health Services Research, 21(1), 940. https://doi.org/10.1186/s12913-021-06972-6

Langenberger, B., Worsham, C., & Geldsetzer, P. (2024). The Effect of Length of Stay in Hospital on Patients’ Health Outcomes: A Quasi-Experimental Study. medRxiv. https://doi.org/10.1101/2024.12.02.24318326

Lötsch, J., Kringel, D., & Ultsch, A. (2024). Revisiting Fold-Change Calculation: Preference for Median or Geometric Mean Over Arithmetic Mean-Based Methods. Preprints. https://doi.org/10.20944/preprints202406.1390.v1

MacFarling Meure, C., Steer, B., & Porter, J. (2023). Interrelationships Between Dietary Outcomes, Readmission Rates, and Length of Stay in Hospitalised Oncology Patients: A Scoping Review. Nutrients, 15(2), 400. https://doi.org/10.3390/nu15020400

Mahyoub, M. A., Dougherty, K., Yadav, R. R., Berio-Dorta, R., & Shukla, A. (2024). Development and Validation of a Machine Learning Model Integrated with the Clinical Workflow for Inpatient Discharge Date Prediction. Frontiers in Digital Health, 6, 1–10. https://doi.org/10.3389/fdgth.2024.1455446

Pauldin, J. (2021). American College of Health Care Administrators. Retrieved from https://www.achca.org/index.php?option=com_dailyplanetblog&view=entry&category=achca-partner&id=90:length-of-stay-los-what-is-the-best-calculation-

Roldan, H. A., Brown, A. R., Radey, J., Hogenbirk, J. C., & Allen, L. R. (2022). Enhanced Recovery After Surgery Reduced Length of Stay After Colorectal Surgery in a Small Rural Hospital in Ontario. medRxiv. https://doi.org/10.1101/2022.03.23.22272850

Downloads

Published

2025-11-07

How to Cite

[1]
H. A. Muchlis, W. Z. Qomarania, M. Nurmalasari, A. C. D. Kurniawati, and B. W. Lestari, “Length of Stay Patterns and Their Relation to Coding Accuracy: Polanya Lama Tinggal Pasien dan Hubungannya dengan Akurasi Koding”, PELS, vol. 9, pp. 86–98, Nov. 2025.