Sentiment Analysis of the COVID-19 Booster Vaccine with the Naïve Bayes Algorithm
Analisis Sentimen Vaksin Booster COVID-19 dengan Algoritme Naïve Bayes
Abstract
In early 2020, a new deadly virus was discovered that can spread quickly, called SARS-CoV-2 or Coronavirus Disease 2019 (COVID-19). Indonesia is a country with a relatively high number of survivors of COVID-19. The success of the Indonesian government in providing massive COVID-19 vaccinations can minimize the risk of death. The World Health Organization (WHO) stated it would revoke the Public Health Emergency of International Concern (PHEIC) status for COVID-19 in May 2023. However, many positive cases of Covid-19 were still found in Indonesia. Most of them are survivors who have not carried out complete vaccinations until they get a booster vaccine. This study analyzes public sentiment about booster vaccines in Indonesia using the Naïve Bayes classification algorithm. The results showed that the classification modeling accuracy had an excellent value of 97.51%. In contrast, based on the analysis results, the number of words that frequently appeared in the twelve highest word cloud visualization results found tokens that had positive sentiment values.
Downloads
References
[2] Fauziyyah, A. K. (2020). Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python. Jurnal Ilmiah SINUS, 18(2), 31. https://doi.org/10.30646/sinus.v18i2.491
[3] Ipmawati, J., Kusrini, & Taufiq Luthfi, E. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security, 6(1), 28–36.
[4] Luqyana, W. A., Cholissodin, I., & Perdana, R. S. (2018). Analisis Sentimen Cyberbullying Pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 4704–4713.
[5] Makmun, A., & Hazhiyah, S. F. (2020). Tinjauan Terkait Pengembangan Vaksin Covid 19. Molucca Medica, 13, 52–59. https://doi.org/10.30598/molmed.2020.v13.i2.52
[6] Masnun, M. A., Sulistyowati, E., & Ronaboyd, I. (2021). Pelindungan Hukum Atas Vaksin Covid-19 Dan Tanggung Jawab Negara Pemenuhan Vaksin Dalam Mewujudukan Negara Kesejahteraan. DiH: Jurnal Ilmu Hukum, 17(1), 35–47. https://doi.org/10.30996/dih.v17i1.4325
[7] Mona Cindo, Dian Palupi Rini, E. (2019). Literartur Review : Metode Klasifikasi Pada Sentimen Analisis. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 66–70.
[8] Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2015). Analisis Sentimen Pada Jasa Ojek Online ... (Nugroho dkk.). 156–161.
[9] Salam, A., Zeniarja, J., & Khasanah, R. S. U. (2018). Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia). Prosiding SINTAK, 480–486.
[10] Sari, I. P., & Sriwidodo, S. (2020). Perkembangan Teknologi Terkini dalam Mempercepat Produksi Vaksin COVID-19. Majalah Farmasetika, 5(5), 204. https://doi.org/10.24198/mfarmasetika.v5i5.28082
[11] Setian, D., & Seprina, I. (2019). Analisis Sentimen Masyarakat Terhadap Data Tweet Lazada Menggunakan Text Mining Dan Algoritma Naive Bayes. Bina Darma Conference on Computer Science, 998–1004.
[12] Satuan Tugas Penanganan COVID-19, WHO Cabut Status Kegawatdaruratan Pandemi COVID-19 diakses dari https://covid19.go.id/artikel/2023/05/10/who-cabut-status-kegawatdaruratan-pandemi-covid-19 tanggal 18 Mei 2023
Copyright (c) 2023 Dyah Retno Utari
This work is licensed under a Creative Commons Attribution 4.0 International License.