Comparison of RAM Classification with Decision Tree Algorithms and KNN Komparasi Klasifikasi RAM dengan Algoritma Decision Tree dan KNN
Main Article Content
Abstract
A laptop is a rather small personal computer consisting of a keyboard, screen, microprocessor and usually a rechargeable battery. In the current era of technology, when buying a laptop, we need to have thorough and detailed considerations regarding our needs in using a laptop, especially laptop RAM. By comparing Decision Tree and KNearest Neighbors algorithm, a more accurate algorithm was found to make a prediction in buying a laptop with suitable variable consideration. The result shows that Decision Tree algorithm is more accurate to be used in predicting the suitable laptop RAM. Decision Tree accuracy is 68%, this result is higher than KNN accuracy which is only 66%.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] M. R. Noviansyah, W. Suharso, D. R. Chandranegara, M. S. Azmi, and M. Hermawan, “SISTEM
PENDUKUNG KEPUTUSAN PEMILIHAN LAPTOP PADA E-COMMERCE MENGGUNAKAN METODE WEIGHTED PRODUCT,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), Nov. 2019, vol. 5, pp. 43–53. doi: 10.22219/SENTRA.V0I5.3025.
[3] G. P. Sanyoto, R. I. Handayani, and E. Widanengsih, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN LAPTOP UNTUK KEBUTUHAN OPERASIONAL DENGAN METODE AHP (STUDI KASUS: DIREKTORAT PEMBINAAN KURSUS DAN PELATIHAN KEMDIKBUD),” Jurnal Pilar Nusa Mandiri, vol. 13, no. 2, pp. 167–174, 2017, Accessed: Jun. 08, 2022. [Online]. Available: http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/233
[4] R. Elnatan and H. Tannady2, “Alternatif Pemilihan Laptop Bagi Mahasiswa Di Jakarta Utara Menggunakan Metode Analytic Hierarchy Process,” Jurnal Teknologi, vol. 10, no. 1, pp. 8–13, Jul. 2020, doi: 10.35134/JITEKIN.V10I1.17.
[5] J. E. S. Casym and D. N. Oktiara, “Aplikasi Analytical Hierarchy Process dalam Mengidentifikasi Preferensi Laptop Bagi Mahasiswa,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), Feb. 2020, pp. 636–640.
[6] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science and Research, vol. 9, pp. 381–386, 2020, doi: 10.21275/ART20203995.
[7] N. Hidayati, J. Suntoro, and G. G. Setiaji, “Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 117–126, Nov. 2021, doi: 10.34128/JSI.V7I2.313.
[8] C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Computer Science, vol. 181, pp. 526–534, Jan. 2021, doi: 10.1016/J.PROCS.2021.01.199.
[9] V. Plotnikova, M. Dumas, and F. Milani, “Adaptations of data mining methodologies: A systematic literature review,” PeerJ Computer Science, vol. 6, pp. 1–43, May 2020, doi: 10.7717/PEERJ-CS.267/SUPP-2. [10] P. Joshi, Artificial Intelligence with Python. Packt Publishing, 2017.
[10] R. Susmaga, “Confusion Matrix Visualization,” Intelligent Information Processing and Web Mining, pp. 107– 116, 2004, doi: 10.1007/978-3-540-39985-8_12.