Raindrop Removal On A Single Image Using The Generative Adversarial Network


Raindrop Removal Pada Citra Tunggal Menggunakan Generative Adversarial Network


  • (1) * Muhammad Rizal Muttaqin1            Universitas Darussalam Gontor  
            Indonesia

  • (2)  Oddy Virgantara Putra            Universitas Darussalam Gontor  
            Indonesia

  • (3)  Lukman Effendi            Universitas Darussalam Gontor  
            Indonesia

    (*) Corresponding Author

Abstract

The presence of raindrops attached to the window glass or vehicle glass reduces visibility of the actual scene. The area covered by raindrops forms a round image and reflects light from the actual scene, this image is called Raindrop. In some cases, the camera's focus is blocked by Raindrop will result in a blurry image. The problem faced is that there is no actual landscape image, so to overcome this this research tries to adapt the research from Rui Qian and MaybeShewill-CV which uses the Generative Adversarial Network architecture, by adding the Raindrop and Groundtruh datasets from observations at Darussalam Gontor University. The purpose of this study is to remove raindrops from a single image. This is important to research because it provides updates and optimizes the results of previous research. This study shows the accuracy of PSNR 21.37 and SSIM 0.7561. The model managed to remove Raindrops from the image, but still couldn't match the Groundtruth image. Inability to handle raindrops due to lack of time to run a large number of epochs to produce PSNR values ​​above 40 db and SSIM above 0.9. PSNR and SSIM values ​​can continue to increase along with the addition of the dataset as well as the number of epoch training models carried out.

Downloads

Download data is not yet available.

References

[1] M. Roser, J. Kurz, and A. Geiger, “Realistic modeling of water droplets for monocular adherent raindrop recognition using Bézier curves,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6469 LNCS, no. PART 2, pp. 235–244, 2011, doi: 10.1007/978-3-642-22819-3_24.
[2] A. Yamashita, Y. Tanaka, and T. Kaneko, “Removal of adherent waterdrops from images acquired with stereo camera,” 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, no. 7, pp. 953–958, 2005, doi: 10.1109/IROS.2005.1545103.
[3] A. Yamashita, I. Fukuchi, and T. Kaneko, “Noises removal from image sequences acquired with moving camera by estimating camera motion from spatio-temporal information,” 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 2009, pp. 3794–3801, 2009, doi: 10.1109/IROS.2009.5354639.
[4] S. You, R. T. Tan, R. Kawakami, Y. Mukaigawa, and K. Ikeuchi, “Adherent raindrop modeling, detectionand removal in video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1721–1733, 2016, doi: 10.1109/TPAMI.2015.2491937.
[5] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken through a window covered with dirt or rain,” Proc. IEEE Int. Conf. Comput. Vis., pp. 633–640, 2013, doi: 10.1109/ICCV.2013.84.
[6] R. Qian, R. T. Tan, W. Yang, J. Su, and J. Liu, “Attentive Generative Adversarial Network for Raindrop Removal from A Single Image,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2482–2491, 2018, doi: 10.1109/CVPR.2018.00263.
[7] Imates, “SSIM: Structural Similarity Index,” www.imatest.com, 2021. .
[8] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: Survey and analysis of current methods,” Signal Processing, vol. 90, no. 3, pp. 727–752, 2010, doi: 10.1016/j.sigpro.2009.08.010.
[9] M. Wulandari, “Pengukuran Ssim Dan Analisis Kinerja Metode Interpolasi Untuk Peningkatan Kualitas Citra Digital,” J. Muara Sains, Teknol. Kedokt. dan Ilmu Kesehat., vol. 1, no. 1, pp. 184–195, 2017, doi: 10.24912/jmstkik.v1i1.429.
[10] A. Solichin, “Mengukur Kualitas Citra Hasil Steganografi,” Mengukur Kualitas Citra Has. Steganografi, no. April, pp. 1–4, 2015.
Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2021-11-27
 
How to Cite
[1]
Muhammad Rizal Muttaqin1, Oddy Virgantara Putra, and Lukman Effendi, “Raindrop Removal On A Single Image Using The Generative Adversarial Network ”, PELS, vol. 2, Nov. 2021.