Mad Reading Law Classification Using Mel Frequency Cepstal Coefficient (MFCC) and Hidden Markov Model (HMM)


Klasifikasi Hukum Bacaan Mad Menggunakan Mel Frequency Cepstal Coefficient (MFCC) Dan Hidden Markov Model (HMM)


  • (1) * Oddy Virgantara Putra            Universitas Darussalam Gontor  
            Indonesia

  • (2)  Faisal Reza Pradana              
            Indonesia

  • (3)  Jordan Istiqlal Qalbi Adiba              
            Indonesia

    (*) Corresponding Author

Abstract

The COVID-19 pandemic is a disaster that hit the world at this time, all activities are limited. This pandemic has also greatly impacted the process of teaching and evaluating the reading of the Koran which was carried out using the talaqqi and musyafahah methods. Machine Learning research has been developed for the legal classification of Quran recitation. This study aims to be able to classify the law of recitation of recitation, especially in the law of Mad recitation of the letter Maryam verses 1 to 15. This study builds a model using the Mel Frequency Ceptral Coefficient (MFCC) feature extraction with the Hidden Markov Model (HMM) algorithm method. MFCC is used for feature extraction in voice that processes voice data in several stages, including pre-emphasis, frame-blocking, windowing, Fast Fourier Transform, Mel Frequency Wrapping, and Ceptral Liftering. HMM is used in speech recognition with standard sentence percentages. The dataset used in this study is voice data taken from the voice of the Quran reciter that has been recognized and has been affiliated. The test results on the model that has been built have an average percentage of 80% accuracy of the test data.

Downloads

Download data is not yet available.

References

N. H. bin Yusof, M. A. bin M. Razali, N. binti Omar, M. F. M. Abdelgelil, and M. S. bin Hamzah, “Concept and Execution of Talaqqi and Musyafahah Method in Learning Al-Quran,” Int. J. Acad. Res. Bus. Soc. Sci., vol. 8, no. 11, 2018, doi: 10.6007/ijarbss/v8-i11/4930. DOI: https://doi.org/10.6007/IJARBSS/v8-i11/4930

I. mauliza Bustami, Fadlisyah, “SISTEM PENDETEKSI KESALAHAN DALAM MEMBACA Al-QUR’AN AYAT 1-5 MENGGUNAKAN METODE VITERBI Bustami,” TECHSI J. Penelit. Tek. Inform. Vol 9 NO. 1 hal 1-15, vol. Vol 9 No.1, pp. 1–15, 2017.

A. AbdulQader Al-Bakeri, “ASR for Tajweed Rules: Integrated with SelfLearning Environments,” Int. J. Inf. Eng. Electron. Bus., vol. 9, no. 6, pp. 1–9, 2017, doi: 10.5815/ijieeb.2017.06.01. DOI: https://doi.org/10.5815/ijieeb.2017.06.01

B. Yousfi and A. M. Zeki, “Holy Qur’an speech recognition system Imaalah checking rule for warsh recitation,” in 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), Mar. 2017, no. March, pp. 258–263, doi: 10.1109/CSPA.2017.8064962. DOI: https://doi.org/10.1109/CSPA.2017.8064962

M. Bezoui, A. Elmoutaouakkil, and A. Beni-Hssane, “Feature extraction of some Quranic recitation using Mel-Frequency Cepstral Coeficients (MFCC),” Int. Conf. Multimed. Comput. Syst. -Proceedings, vol. 0, pp. 127–131, 2017, doi: 10.1109/ICMCS.2016.7905619. DOI: https://doi.org/10.1109/ICMCS.2016.7905619

H. Heriyanto, S. Hartati, and A. E. Putra, “Ekstraksi Ciri Mel Frequency Cepstral Coefficient (Mfcc) Dan Rerata Coefficient Untuk Pengecekan Bacaan Al-Qur’an,” Telematika, vol. 15, no. 2, p. 99, 2018, doi: 10.31315/telematika.v15i2.3123. DOI: https://doi.org/10.31315/telematika.v15i2.3123

W. S. M. Sanjaya and Z. Salleh, “Implementasi Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inferense System (ANFIS) sebagai Kontrol Lampu Otomatis,” Al-HAZEN J. Phys., vol. 1, no. 1, 2014. DOI: https://doi.org/10.17509/wafi.v1i2.4277

E. Widiyanto, S. N. Endah, and S. Adhy, “Aplikasi Speech To Text Berbahasa Indonesia Menggunakan Mel Frequency Cepstral Coefficients Dan Hidden Markov Model ( Hmm ),” in Prosiding Seminar Nasional Ilmu Komputer Undip, 2014, pp. 39–44.

M. S. Likitha, S. R. R. Gupta, K. Hasitha, and A. U. Raju, “Speech based human emotion recognition using MFCC,” Proc. 2017 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2017, vol. 2018-Janua, pp. 2257–2260, 2018, doi: 10.1109/WiSPNET.2017.8300161. DOI: https://doi.org/10.1109/WiSPNET.2017.8300161

S. Fitriah, “Fonologi bahasa jawa dialek jawa timur,” Jurnal-el Badan Bhs., pp. 47–53, 2015.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2021-12-20
 
How to Cite
[1]
O. V. Putra, Faisal Reza Pradana, and Jordan Istiqlal Qalbi Adiba, “Mad Reading Law Classification Using Mel Frequency Cepstal Coefficient (MFCC) and Hidden Markov Model (HMM)”, PELS, vol. 2, Dec. 2021.